English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1990-Aug

Polyamines, hydroxycinnamoylputrescines, and root formation in leaf explants of tobacco cultivated in vitro: effects of the suicide inhibitors of putrescine synthesis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D Burtin
J Martin-Tanguy
M Paynot
M Carré
N Rossin

Keywords

Abstract

In vitro formation of roots is obtained directly, without intermediate growth of callus, from foliar explants of a tobacco (Nicotiana tabacum) plant cultured on Murashige and Skoog medium containing IAA. Auxin-induced root formation was accompanied by significant changes in hydroxycinnamoylputrescine levels. Increasing levels were found in leaf explants during the first 14 days in culture; this was followed by a sharp decline after 20 days. Early changes in putrescine conjugates were detected in leaf explants before the visible appearance of roots. An early and transitory accumulation of hydroxycinnamoylputrescines was observed in the roots. Free polyamines (putrescine, spermidine, and spermine) in leaf explants and roots were always at a low level and only small changes in their concentrations were observed, alpha-dl-difluoromethylarginine and alpha-dl-difluoromethylornithine, specific, irreversible inhibitors of arginine decarboxylase and ornithine decarboxylase, respectively, inhibited putrescine accumulation and root initiation and reduced the fresh and dry weights of leaf explants. These effects were reversed by free putrescine or hydroxycinnamoylputrescines. The results reported here suggest that hydroxycinnamoylputrescines are associated with root formation. The relationship among free polyamines, hydroxycinnamoylputrescines, cell division, and root formation is discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge