English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioMed Research International 2019

Polydatin Inhibits Adipose Tissue Inflammation and Ameliorates Lipid Metabolism in High-Fat-Fed Mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Li Zheng
Jiayuan Wu
Juanfen Mo
Li Guo
Xiaoyan Wu
Yi Bao

Keywords

Abstract

Polydatin (PD), an active component of Chinese herbs, is reported to have many biological functions, such as cardioprotective actions, anti-inflammatory activities, and antitumor effects. In this study, we investigated the effects of PD on body weight control, glucose and lipid metabolic regulation, and anti-inflammation in a high-fat-diet- (HFD-) induced obese mice model. After treatment of PD (100 mg/kg/d for 4 weeks), HFD mice reduced body weight, retroperitoneal fat mass, and adipose cell sizes; significantly lowered serum total cholesterol triglyceride (TG) and low-density lipoprotein (LDL) levels; and increased high-density lipoprotein (HDL) levels compared with the HFD control mice. Further studies showed that PD downregulated the mRNA and protein expressions of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor involving in the regulation of adipocyte differentiation, in the retroperitoneal fat of HFD mice. Additionally, PD significantly upregulated the mRNA and protein expressions of leptin, an adipocyte-derived anorexic hormone that regulates food intake and energy expenditure, in the adipose tissues of HFD mice. Moreover, PD reduced the expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) in the retroperitoneal and epididymal tissues of HFD mice, suggesting that PD prevented adipose tissue inflammation. In conclusion, PD may serve as a pharmaceutic candidate for obesity-related lipid metabolism, anti-inflammation, and body weight loss.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge