English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmaceutical Research 2019-Mar

Polyelectrolyte Carboxymethyl Cellulose for Enhanced Delivery of Doxorubicin in MCF7 Breast Cancer Cells: Toxicological Evaluations in Mice Model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Vahid Shafiei-Irannejad
Mahdi Rahimi
Mojtaba Zarei
Roshan Dinparast-Isaleh
Saman Bahrambeigi
Alireza Alihemmati
Salman Shojaei
Zarrin Ghasemi
Bahman Yousefi

Keywords

Abstract

Chemotherapy as an important tool for cancer treatment faces many obstacles such as multidrug resistance and adverse toxic effects on healthy tissues. Drug delivery systems have opened a new window to overcome these problems.A polyelectrolyte carboxymethyl cellulose polymer as a magnetic nanocarrier was synthesized for enhancing delivery and uptake of doxorubicin in MCF7 breast cancer cells and decreasing the adverse toxic effects to healthy tissues.The physicochemical properties of developed nanocarrier showed that it can be used in drug delivery purposes. The efficiency of the delivery system was assessed by loading and release studies. Besides, biological assays including protein-particle interaction, hemolysis assay, cytotoxicity study, cellular uptake, and apoptosis analysis were performed. All results persuaded us to investigate the cytotoxic effects of nanocarrier in an animal model by determining the biochemical parameters attributed to organ injuries, and hematoxylin and eosin (H&E) staining for histopathological manifestations. We observed that the nanocarrier has no toxic effect on healthy tissues, while, it is capable of reducing the toxic side effects of doxorubicin by more cellular internalization.Chemical characterizations and biological studies confirmed that developed nanocarrier with permanent cationic groups of imidazolium and anionic carboxylic acid groups is an effective candidate for anticancer drug delivery.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge