English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Phylogenetics and Evolution 2014-Oct

Polyphyly, gene-duplication and extensive allopolyploidy framed the evolution of the ephemeral Vulpia grasses and other fine-leaved Loliinae (Poaceae).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A J Díaz-Pérez
M Sharifi-Tehrani
L A Inda
P Catalán

Keywords

Abstract

The fine-leaved Loliinae is one of the temperate grass lineages that is richest in number of evolutionary switches from perennial to annual life-cycle, and also shows one of the most complex reticulate patterns involving distinct diploid and allopolyploid lineages. Eight distinct annual lineages, that have traditionally been placed in the genus Vulpia and in other fine-leaved ephemeral genera, have apparently emerged from different perennial Festuca ancestors. The phenotypically similar Vulpia taxa have been reconstructed as polyphyletic, with polyploid lineages showing unclear relationships to their purported diploid relatives. Interspecific and intergeneric hybridization is, however, rampant across different lineages. An evolutionary analysis based on cloned nuclear low-copy GBSSI (Granule-Bound Starch Synthase I) and multicopy ITS (Internal Transcribed Spacer) sequences has been conducted on representatives of most Vulpia species and other fine-leaved lineages, using Bayesian consensus and agreement trees, networking split graphs and species tree-based approaches, to disentangle their phylogenetic relationships and to identify the parental genome donors of the allopolyploids. Both data sets were able to reconstruct a congruent phylogeny in which Vulpia was resolved as polyphyletic from at least three main ancestral diploid lineages. These, in turn, participated in the origin of the derived allopolyploid Vulpia lineages together with other Festuca-like, Psilurus-like and some unknown genome donors. Long-distance dispersal events were inferred to explain the polytopic origin of the Mediterranean and American Vulpia lineages.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge