English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anti-Cancer Agents in Medicinal Chemistry 2010-Oct

Pomegranate extract, a prooxidant with antiproliferative and proapoptotic activities preferentially towards carcinoma cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jeffrey H Weisburg
Alyssa G Schuck
Malki S Silverman
Channa G Ovits-Levy
Loriel J Solodokin
Harriet L Zuckerbraun
Harvey Babich

Keywords

Abstract

The antiproliferative and proapoptotic effects of pomegranate extract (PE), as correlated with its prooxidant activity, were studied. PE exerted greater antiproliferative effects towards cancer, than to normal, cells, isolated from the human oral cavity. In cell-free systems, PE generated hydrogen peroxide (H(2)O(2)) in cell culture media and in phosphate buffered saline, with prooxidant activity increasing from acidic to alkaline pH, and oxidized glutathione (GSH) in an alkaline, phosphate buffer. Detection of PE-generated H(2)O(2) was greatly lessened in medium amended with N-acetyl-L-cysteine. Using HSC-2 carcinoma cells as the bioindicator, the cytotoxicity of PE was potentiated towards cells pretreated with the GSH depleter, 1-chloro-2,4-dinitrobenzene, and attenuated in cells co-treated with the H(2)O(2) scavengers, catalase, pyruvate, and divalent cobalt ion. Intracellular GSH was lessened in cells treated with PE; GSH depletion in PE-treated cells was confirmed visually with the fluorescent dye, Cell Tracker™ Green 5-chloromethylfluorescein diacetate. These studies demonstrated that the antiproliferative mechanism of PE was, in part, by induction of oxidative stress. The mode of cell death was by apoptosis, as shown by flow cytometry, activation of caspase-3, and cleavage of PARP. Lessening of caspase-3 activation and of PARP cleavage in cells co-treated with PE and either cobalt or pyruvate, respectively, as compared to PE alone, indicated that apoptosis was through the prooxidant nature of PE.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge