English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2016-Dec

Pomolic acid suppresses HIF1α/VEGF-mediated angiogenesis by targeting p38-MAPK and mTOR signaling cascades.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ji-Hyun Park
Jaewoo Yoon
Byoungduck Park

Keywords

Abstract

BACKGROUND

Pomolic acid (PA), an active triterpenoid from Euscaphis japonica, inhibits the proliferation of a variety of cancer cells, but the molecular mechanisms of the anti-angiogenic potential of PA have not been fully elucidated in breast cancer cells.

UNASSIGNED

We investigated the molecular mechanisms underlying the anti-angiogenic effect of PA in epidermal growth factor (EGF)-responsive human breast cancer cells, MCF-7 and MDA-MB-231, and human umbilical vascular endothelial cells (HUVEC).

METHODS

Effects of PA on EGF-induced HIF1α/VEGF expression in MCF-7, MDA-MB-231 and HUVEC were assayed. As to the mechanisms, EGF-mediated MAPKs, PI3K/Akt, and mTOR signaling pathway were performed. Wound healing and invasion assay, tube formation assay, immunoblot assay, real-time PCR, luciferase gene assay, electrophoretic mobility shift assay and immunofluorescence staining were used for assessment.

RESULTS

PA significantly and selectively suppressed EGF-induced HIF1α/VEGF expression, whereas it did not affect the expression of HIF1β in MCF-7 and MDA-MB-231. Furthermore, PA inhibited EGF-induced angiogenesis in vitro and downregulated HIF1α/VEGF expression in HUVEC. Mechanistically, we found that the inhibitory effects of PA on HIF1α/VEGF expression are associated with inhibition of HIF1α/VEGF expression through an EGF-dependent mechanism. In addition, PA suppressed the EGF-induced phosphorylation of p38-MAPK and mTOR.

CONCLUSIONS

PA suppresses EGF-induced HIF1α protein translation by inhibiting the p38-MAPK and mTOR kinase signaling pathways and plays a novel anti-angiogenic role.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge