English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2013-May

Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hao Jiang
Helena Korpelainen
Chunyang Li

Keywords

Abstract

Dioecious plants show sexually different responses to environmental stresses. However, little is known about the dimorphic morphological and physiological responses to soil pollution. To investigate sex-related adaptive responses of Populus yunnanensis seedlings when exposed to excess zinc (Zn), acid rain (AR) and their combination (Zn+AR), we analyzed growth parameters, Zn accumulation and allocation, photosynthetic capacity and biochemical responses under different treatments. Results revealed that both excess Zn and Zn+AR have a negative effect on plant growth. Males have a greater potential than females to enrich Zn. The photosynthesis limitation could be attributable to a lower stomatal conductance, photosynthetic nitrogen use efficiency and nitrate reductase activity induced by Zn accumulation. Overproduction of reactive oxygen species was detected, and females showed higher levels of H2O2 and O2- than did males under excess Zn and Zn+AR. In addition, indicators related to plant injury showed expected increases and exhibited sexual differences. Males synthesized more biochemical molecules, such as proline and non-protein thiol, showing a stronger defense capacity in responses to either excess Zn or Zn+AR. Taking into account the Zn accumulation and the resulting injuries in plants, we suggest that excess Zn causes sex-related adaptive responses and males possess a more effective self-protection mechanism, Zn-stressed individuals suffering from AR did not show notable aggravation or alleviation when compared to damages induced by excess Zn alone.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge