English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plants 2019-Mar

Post-Translational Modification of Proteins Mediated by Nitro-Fatty Acids in Plants: Nitroalkylation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lorena Aranda-Caño
Beatriz Sánchez-Calvo
Juan Begara-Morales
Mounira Chaki
Capilla Mata-Pérez
María Padilla
Raquel Valderrama
Juan Barroso

Keywords

Abstract

Nitrate fatty acids (NO₂-FAs) are considered reactive lipid species derived from the non-enzymatic oxidation of polyunsaturated fatty acids by nitric oxide (NO) and related species. Nitrate fatty acids are powerful biological electrophiles which can react with biological nucleophiles such as glutathione and certain protein⁻amino acid residues. The adduction of NO₂-FAs to protein targets generates a reversible post-translational modification called nitroalkylation. In different animal and human systems, NO₂-FAs, such as nitro-oleic acid (NO₂-OA) and conjugated nitro-linoleic acid (NO₂-cLA), have cytoprotective and anti-inflammatory influences in a broad spectrum of pathologies by modulating various intracellular pathways. However, little knowledge on these molecules in the plant kingdom exists. The presence of NO₂-OA and NO₂-cLA in olives and extra-virgin olive oil and nitro-linolenic acid (NO₂-Ln) in Arabidopsis thaliana has recently been detected. Specifically, NO₂-Ln acts as a signaling molecule during seed and plant progression and beneath abiotic stress events. It can also release NO and modulate the expression of genes associated with antioxidant responses. Nevertheless, the repercussions of nitroalkylation on plant proteins are still poorly known. In this review, we demonstrate the existence of endogenous nitroalkylation and its effect on the in vitro activity of the antioxidant protein ascorbate peroxidase.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge