English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2016-Dec

Potent bacterial neuraminidase inhibitors, anthraquinone glucosides from Polygonum cuspidatum and their inhibitory mechanism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zia Uddin
Yeong Hun Song
Marcus J Curtis-Long
Jeong Yoon Kim
Heung Joo Yuk
Ki Hun Park

Keywords

Abstract

BACKGROUND

P. cuspidatum is a popular Chinese medicinal herb, having a long history of usage in traditional Chinese medicine for the treatment of several inflammatory diseases in the form of powders and decoctions. Similarly there are many reports that P. cuspidatum has antibacterial and anti-inflammatory effects, both of which are properties associated with compounds having activity against bacterial neuraminidase (BNA).

OBJECTIVE

We investigated whether P. cuspidatum's metabolites exhibited BNA inhibition. Consistent with our hypothesis, we found several inhibitors from the methanol extract of this plant, and then fully characterized their inhibitory mechanisms.

METHODS

Activity guided separation of methanol extract led to isolation of individual constituents, and subsequently their structures were elucidated by spectroscopic analysis. Detailed kinetic behaviors of BNA inhibitors were explored by showing the changes of Km and Vmax, the ratios of KI/KIS and Kik/Kiv, and fluorescence quenching effect.

CONCLUSIONS

This study attempted to isolate the responsible metabolites and elucidate the BNA inhibitory mechanism. The principal BNA inhibitory compounds (2-6) were identified as emodin (2), physcion-8-O-β-D-glucopyranoside (3), emodin-8-O-β-D-glucopyranoside (4), emodin-1-O-β-D-glucopyranoside (5), and 2-methoxy-6-acetyl-7-methyljuglone (6). Unexpectedly, anthraquinone glucosides (3-5) were much more potent than their corresponding aglycones (1 and 2). For example, emodin (2) had an IC50=5.4μM, whereas its glucosides (4 and 5) had IC50=0.85μM and 0.43μM respectively. A similar trend was observed with physcion (1, IC50>200μM) and its glucoside (3, IC50=6.2μM). The anthraquinone (2) was mixed type I inhibitor, whereas its glucosides (4 and 5) were noncompetitive. In addition, the fluorescence quenching study showed that the affinity constants (KSV) of inhibitors increased in proportion to their inhibitory potencies. Furthermore, we quantified the major and minor metabolites through UPLC-PDA-Q-TOF/MS, and revealed that the most potent inhibitors were the major constituents. This result contributes to our understanding of P. cuspidatum utility as functional food stuff and widely used herbal medicine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge