English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Physics 2011-Nov

Potential of mean force between a large solute and a biomolecular complex: a model analysis on protein flux through chaperonin system.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ken-ich Amano
Hiraku Oshima
Masahiro Kinoshita

Keywords

Abstract

Insertion of a large solute into an even larger vessel comprising biopolymers followed by release of the same solute from it is one of the important functions sustaining life. As a typical example, an unfolded protein is inserted into a chaperonin from bulk aqueous solution, a cochaperonin acting as a lid is attached to the chaperonin rim and the protein folds into its native structure within the closed cavity, the cochaperonin is detached after the folding is finished, and the folded protein is released back to the bulk solution. On the basis of the experimental observations manifesting that the basic aspects of the protein flux through the chaperonin system is independent of the chaperonin, cochaperonin, and protein species, we adopt a simple model system with which we can cover the whole cycle of the protein flux. We calculate the spatial distribution of the solvent-mediated potential of mean force (PMF) between a spherical solute and a cylindrical vessel or vessel/lid complex. The calculation is performed using the three-dimensional integral equation theory, and the PMF is decomposed into energetic and entropic components. We argue that an unfolded protein with a larger excluded volume (EV) and weak hydrophobicity is entropically inserted into the chaperonin cavity and constrained within a small space almost in its center. The switch from insertion to release is achieved by decreasing the EV and turning the protein surface hydrophilic in the folding process. For this release, in which the energetic component is a requisite, the feature that the chaperonin inner surface in the absence of the cochaperonin is not hydrophilic plays essential roles. On the other hand, the inner surface of the chaperonin/cochaperonin complex is hydrophilic, and the protein is energetically repelled from it: The protein remains constrained within the small space mentioned above without contacting the inner surface for correct folding. The structural and inner-surface properties of the chaperonin or complex are controlled by the adenosine triphosphate (ATP) binding to the chaperonin, hydrolysis of ATP into adenosine diphosphate (ADP) and Pi, and dissociation of ADP and Pi. The function of the chaperonin system is exhibited by synchronizing the chemical cycle of ATP hydrolysis with hydration properties of a protein in the water confined on the scale of a nanometer which are substantially different from those in the bulk water.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge