English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Vaccine 2007-Jan

Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ilia Z Romero Méndez
Yi Shi
Harm HogenEsch
Stanley L Hem

Keywords

Abstract

The degree of antigen adsorption by aluminum-containing adjuvants is considered an important characteristic of vaccines that is related to immunopotentiation by the adjuvant. This study examined immunopotentiation by aluminum phosphate adjuvant in three model vaccines in which the antigen was not adsorbed in the vaccine formulation nor when mixed in vitro with interstitial fluid. In the first model vaccine, aluminum phosphate adjuvant was pre-treated with 0.5 M KH2PO4 to minimize the adsorption of dephosphorylated alpha casein. The second model vaccine was composed of aluminum phosphate adjuvant and ovalbumin that was dephosphorylated by treatment with potato acid phosphatase. The third model vaccine consisted of aluminum phosphate adjuvant and lysozyme (LYS). In order to prevent adsorption of lysozyme, the aluminum phosphate adjuvant was pre-treated with fibrinogen, a protein present in interstitial fluid that binds strongly to aluminum phosphate adjuvant. Immunopotentiation was evaluated by measuring antibody production in mice. It was found that all three model vaccines induced antibody titers that were statistically higher than induced by a solution of antigen without adjuvant and similar to vaccines in which the antigens were adsorbed by aluminum phosphate adjuvant. Confocal microscopy experiments suggested that the antigens used in these experiments, even though not adsorbed to the aluminum phosphate adjuvant, were trapped in void spaces within the adjuvant aggregates, resulting in uptake of antigen by dendritic cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge