English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Natural Products 2018-Apr

Precursor-Directed Biosynthesis of Phenylbenzoisoquinolindione Alkaloids and the Discovery of a Phenylphenalenone-Based Plant Defense Mechanism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yu Chen
Christian Paetz
Bernd Schneider

Keywords

Abstract

Phenylbenzoisochromenone glucosides (oxa-phenylphenalenone glucosides) occurring in some phenylphenalenone-producing plants of the Haemodoraceae undergo conversion to phenylbenzoisoquinolindiones (aza-phenylphenalenones) in extracts of Xiphidium caeruleum. Precursor-directed biosynthetic experiments were used to generate a series of new phenylbenzoisoquinolindiones from native phenylbenzoisochromenone glucosides and external amines, amino acids, and peptides. Intermediates of the conversion were isolated, incubated with cell-free extracts, and exposed to reactions under oxidative or inert conditions, respectively, to elucidate the entire pathway from phenylbenzoisochromenones to phenylbenzoisoquinolindiones. An intermediate in this pathway, a reactive hydroxylactone/aldehyde, readily binds not only to amines in vitro but may also bind to the N-terminus of biogenic peptides and proteins of herbivores and pathogens in vivo. The deactivation of biogenic amino compounds by N-terminal modification is discussed as the key reaction of a novel phenylphenalenone-based plant defense mechanism. According to these data, the ecological function of phenylphenalenone-type compounds in the Haemodoraceae, subfamily Haemodoroideae, has been substantiated.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge