English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science & Technology 2007-Sep

Predicting bioavailability of sediment polycyclic aromatic hydrocarbons to Hyalella azteca using equilibrium partitioning, supercritical fluid extraction, and pore water concentrations.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Steven B Hawthorne
Nicholas A Azzolina
Edward F Neuhauser
Joseph P Kreitinger

Keywords

Abstract

Polycyclic aromatic hydrocarbon (PAH) bioavailability to Hyalella azteca was determined in 97 sediments from six former manufactured-gas plants and two aluminum smelter sites. Measurements of Soxhlet extractable, rapidly released based on mild supercritical fluid extraction, and pore water dissolved concentrations of 18 parent and 16 groups of alkyl PAHs (PAH34) were used to predict 28 daysurvival based on equilibrium partitioning and hydrocarbon narcosis models. Total PAH concentrations had little relationship to toxicity. Amphipods survived in sediments with PAH34 concentrations as high as 2990 microg/g, while sediments as low as 2.4 microg/g of PAH34 resulted in significant mortality. Equilibrium partitioning using either total extractable or rapidly released concentrations significantly improved predictions. However, pore water PAH34 concentrations were best for predicting amphipod survival and correctly classified toxic and nontoxic sediment samples with an overall model efficiency of 90%. Alkyl PAHs accounted for 80% of the toxicity, demonstrating that careful measurement of the 16 alkyl clusters in pore water is required. Regression analysis of the pore water PAH34 data from 97 field sediments against amphipod survival resulted in a mean 50% lethal residue value of 33 micromol/g of lipid, consistent with 32 micromol/g of lipid for fluoranthene determined by others in controlled laboratory conditions, thus demonstrating the applicability of EPA's hydrocarbon narcosis model when using pore water PAH34 concentrations.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge