English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta crystallographica. Section D, Biological crystallography 2004-Jan

Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Addie Nina Olsen
Heidi Asschenfeldt Ernst
Leila Lo Leggio
Eva Johansson
Sine Larsen
Karen Skriver

Keywords

Abstract

The NAC domain (residues 1-168) of ANAC, encoded by the abscisic acid-responsive NAC gene from Arabidopsis thaliana, was recombinantly produced in Escherichia coli and crystallized in hanging drops. Three morphologically different crystal forms were obtained within a relatively narrow range of conditions: 10-15% PEG 4000 and 0.1 M imidazole/malic acid buffer pH 7.0 in the reservoir, 3.2-7.7 mg ml(-1) protein stock and a 1:1 ratio of reservoir to protein solution in the hanging drop. One of the crystal forms, designated crystal form III, was found to be suitable for further X-ray analysis. Form III crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 62.0, b = 75.2, c = 80.8 A at 100 K. The unit-cell volume is consistent with two molecules in the asymmetric unit and a peak in the native Patterson map suggests the presence of a non-crystallographic twofold axis parallel to a crystallographic axis. Size-exclusion chromatography of the NAC domain showed that the dimeric state is also the preferred state in solution and probably represents the biologically active form. Data sets were collected from four potential heavy-atom derivatives of the form III crystals. The derivatized crystals are reasonably isomorphous with the non-derivatized crystals and the four data sets are being evaluated for use in structure determination by multiple isomorphous replacement.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge