English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1988-Jun

Preparation of Corn Root Plasmalemma with Low Mg-ATPase Latency and High Electrogenic H Pumping Activity after Phase Partitioning.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
N Galtier
A Belver
R Gibrat
J P Grouzis
J Rigaud
C Grignon

Keywords

Abstract

Crude plasma membranes of corn (Zea mays L.) roots were obtained according to MI De Michelis and RM Spanswick (1986 Plant Physiol 81: 542-547). This preparation, which contained tightly sealed vesicles displaying Mg-ATP dependent H(+)-transport, was purified by phase partitioning. The percentage of inside-out vesicles (10%) was determined from the Mg-ATPase latency, revealed with lysophosphatidylcholine. A Triton X-100 treatment described previously (JP Grouzis, R Gibrat, J Rigaud, C Grignon 1987 Biochim Biophys Acta 903: 449-464) was applied to phase-partitioned plasma membranes. The percentage of catalytic sites freely accessible to Mg-ATP increased to 50% after Triton X-100 treatment. Treated vesicles remained capable of electrogenic H(+)-pumping, as demonstrated by Mg:ATP-dependent quinacrine fluorescence quenching and oxonol absorbance shift. As expected from the large increase of the catalytic sites accessibility, increases of the dye responses were observed. Concanavalin A binding was estimated from microelectrophoretic measurements of individual vesicles. Statistical analysis of concanavalin A binding and Mg-ATPase latency suggest that treated membranes have lost their asymmetric structure.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge