English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacognosy Magazine

Preparation of Sesquiterpenoids from Tussilago farfara L. by High-speed Counter-current Chromatography.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kun Cao
Yi Xu
Tian-Ming Zhao
Qing Zhang

Keywords

Abstract

BACKGROUND

Sesquiterpenoids, such as tussilagone, has effects of raising blood pressure, antiplatelet aggregation, and anti-inflammation activities, which is regarded as index compound for quality control of Tussilago farfara L.

OBJECTIVE

This study was aimed to obtain an effective method for fast isolation of sesquiterpenoids from T. farfara L. by high-speed counter-current chromatography (HSCCC).

METHODS

A solvent optimization method for HSCCC was presented, i.e., the separation factors of compounds after the K values of solvent system should be investigated.

RESULTS

A ternary solvent system of n-hexane:methanol:water (5:8:2, v/v/v) was selected and applied for the HSCCC, and 56 mg of tussilagone (2) was isolated from T. farfara L., along with two other sesquiterpenoids 5.6 mg of 2,2-dimethyl-6-acetylchromanone (1) and 22 mg of 14-acetoxy-7 β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methylbutyryloxy)-notonipetranone (3) by HSCCC with high purities. Their chemical structures were elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance experiments.

CONCLUSIONS

These results offered an efficient strategy for preparation of potentially health-relevant phytochemicals from T. farfara L., which might be used for further chemical research and pharmacological studies by preparative HSCCC.

CONCLUSIONS

The real separation efficiency has been verified by analytical HSCCC.A solvent optimization method for HSCCC was presented and applied to separate and prepare active compounds.A method for rapid and effective separation of target compound Tussilagone with high yield and purity from the flower buds of Tussilago farfara.Two other compounds 2,2-Dimethyl-6-acetylchromanone and 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy) -lα- (2'-methylbutyryloxy). notonipetranone hasbeen obtained with high purities from flower buds of Tussilago farfara. Abbreviations used: HSCCC: High-Speed Counter-Current Chromatography; LC-MS: Liquid Chromatograph-Mass Spectrometer; NMR: Nuclear Magnetic Resonance; TCM: Traditional Chinese Medicine; HPLC: High Performance Liquid Chromatography; ESI-MS: Electrospray Ionization Mass Spectrometry; PE: petroleum ether.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge