English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Nutrition and Food Research 2019-Jul

Prevention of Vascular Inflammation by Pterostilbene via Trimethylamine-N-Oxide Reduction and Mechanism of Microbiota Regulation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yen-Chun Koh
Shiming Li
Pei-Yu Chen
Jia-Ching Wu
Nagabhushanam Kalyanam
Chi-Tang Ho
Min-Hsiung Pan

Keywords

Abstract

A gut-microbiota-dependent metabolite of L-carnitine, trimethylamine-N-oxide (TMAO), has been recently discovered as an independent and dose-dependent risk factor for cardiovascular disease (CVD). This study aims to investigate the effects of pterostilbene on reducing TMAO formation and on decreasing vascular inflammation in carnitine-feeding mice.C57BL/6 mice are treated with 1.3% carnitine in drinking water with or without pterostilbene supplementation. Using LC-MS/MS, the result shows that mice treated with 1.3% carnitine only significantly increased the plasma TMAO and pterostilbene supplementation group can reverse it. Additionally, pterostilbene decreases hepatic flavin monooxygenase 3 (FMO3) mRNA levels compared to carnitine only group. It appears that pterostilbene can alter host physiology and create an intestinal microenvironment favorable for certain gut microbiota. Gut microbiota analysis reveals that pterostilbene increases the abundance of Bacteroides. Further, pterostilbene decreases mRNA levels of vascular inflammatory markers tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin).These data suggest that amelioration of carnitine-induced vascular inflammation after consumption of pterostilbene is partially mediated via modulation of gut microbiota composition and hepatic enzyme FMO3 gene expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge