English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolism: Clinical and Experimental 1978-Dec

Primary insulin antagonism of glucose transport in muscle from the older-obese rat.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M B Davidson

Keywords

Abstract

Effects of insulin (1 mU/ml) on diaphragms removed from older-obese (70--110 days, 350--520 g) male Sprague-Dawley rats were compared to responses on muscle removed from younger-lean (27--36 days, 80--150 g) animals. Insulin antagonism on glucose transport (2DG uptake), glucose uptake, glycogen synthesis, glycolysis (lactate production), and glucose oxidation was demonstrated in tissue from the older-obese rats. Extracellular water spaces (measured with inulin-H3) were significantly decreased in these tissue. To determine if insulin antagonism of glucose transport could be secondary to inhibition of a rate-limiting reaction in the Embden-Meyerhof pathway with a subsequent negative feedback on transport, both tissue levels of glycolytic intermediates and oxidation of intracellular lipids were measured. No free intracellular glucose was found in diaphragms from either group of rats. Levels of G-6-P, F-6-P, F-1, 6-diP, PEP, and pyruvate were all lower in muscle from the older-obese animals. Incorporation of C14-FFA into tissue TG was slightly, but significantly, lower in this same tissue. Oxidation of intracellular TG and PL was similar in the two groups. In conclusion, diaphragms from older-obese rats manifest insulin antagonism of glucose transport that is probably responsible for the diminished hormonal effect on glucose uptake and the intracellular pathways of glycogen synthesis, glycolysis, and glucose oxidation. This inhibition of insulin action cannot be accounted for by changes in glycolytic intermediates causing a negative feedback on transport or enhanced lipid oxidation and therefore should be considered primary. The relative effects of age and obesity will need to be evaluated in future studies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge