English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2006-Apr

Primary metabolic pathways and signal transduction in sunflower (Helianthus annuus L.): comparison of transcriptional profiling in leaves and immature embryos using cDNA microarrays.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tarek Hewezi
Michel Petitprez
Laurent Gentzbittel

Keywords

Abstract

The early stage of embryo development is a critical step in plant production. To identify genes with potential roles in the early sunflower seed development, a cDNA microarray approach was employed. We developed a thematic cDNA microarray containing clones representing high sequence similarities with known or predicted Arabidopsis genes implicated in different metabolic and signal transduction pathways. This 800-element cDNA array was used to compare the expression patterns in leaves and immature embryos (2 mm and 6 mm). Statistical analysis, using two-step ANOVA, revealed that 143 cDNA clones can be considered as differentially expressed. Of these, 62 clones were found to be up-regulated in leaves, 81 in embryos whereas only seven clones displayed increased level of mRNA in the 6 mm embryos when compared with 2 mm embryos. The differentially expressed clones are distributed among many metabolic and signal transduction pathways. For example, genes related to fatty acid metabolism and amino acid biosynthesis exhibited preferential expression patterns in immature embryos. Also, clones potentially encoding enzymes involved in the metabolism of ascorbate and aldarate, pyruvate, propanoate and inositol, and citrate cycle were found to be up-regulated in embryos. In contrast, cDNA clones putatively involved in energy metabolism were more abundant in leaves than embryos. Clones encoding potential signal transduction components including receptors, protein kinases, protein phosphatases, and transcription factors were also identified, with preferential expression profiles in immature embryos. The expression patterns derived from this study provide initial characterization of metabolic pathways and signalling transduction networks occurring in the early stage of sunflower seed development.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge