English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1989-Aug

Proalbumin to albumin conversion by a proinsulin processing endopeptidase of insulin secretory granules.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C J Rhodes
S O Brennan
J C Hutton

Keywords

Abstract

A lysate of purified insulin secretory granules, which contains two types of proinsulin processing activity (type 1, Arg-Arg-directed and type II, Lys-Arg-directed (Davidson, H.W., Rhodes, C.J., and Hutton, J. C. (1988) Nature 333, 93-96), was found to process proalbumin by specific proteolytic cleavage of the COOH-terminal side of the Arg-2-Arg-1 sequence. The subcellular distribution of proalbumin processing activity in insulinoma tissue paralleled that for proinsulin conversion and occurred principally in a secretory granule fraction. Cleavage appeared to result from the Arg-Arg-directed type 1 proinsulin processing endo-peptidase. It was Ca2+-dependent (K0.5 activation = 1.0-1.5 mM Ca2+), unaffected by group-specific inhibitors of serine, cysteinyl, or aspartyl proteinases, and had an acidic pH optimum (5.5). Active-site inhibitor studies showed this activity had a preference for dibasic over monobasic amino acid sequences and indicated that the sequence of the dibasic site was an important determinant of the susceptibility of the substrate to cleavage. The activity did not process the proalbumin Christchurch mutant (Arg-2-Arg-1 to Arg-2-Gln-1). It was inhibited by the variant alpha 1-antitrypsin Pittsburgh (Met358 to Arg358; K0.5 = 100 nM) but not by other related proteins normally co-secreted with albumin from hepatocytes, namely alpha 1-antitrypsin M, alpha 2-macroglobulin, or antithrombin III. The insulin secretory granule proalbumin processing activity was indistinguishable from a proalbumin endopeptidase reported in rat liver membranes and similar to the yeast KEX-2 protease. These findings suggest that a highly conserved set of proprotein endopeptidases exists, which are specific for a dibasic sequence but broadly specific for proprotein substrates. Such enzymic activities appear to be active within both the constitutive and regulated pathways of secretion. Intraorganellar Ca2+ and pH appear to play a key role in regulating their activities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge