English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
IET Nanobiotechnology 2019-Apr

Process optimisation for green synthesis of zero-valent iron nanoparticles using Mentha piperita.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maryam Akhbari
Reza Hajiaghaee
Reza Ghafarzadegan
Sepideh Hamedi
Mahdi Yaghoobi

Keywords

Abstract

The potential of Mentha piperita in the iron nanoparticles (FeNPs) production was evaluated for the first time. The influences of the variables such as incubation time, temperature, and volume ratio of the extract to metal ions on the nanoparticle size were investigated using central composite design. The appearance of SPR bands at 284 nm in UV-Vis spectra of the mixtures verified the nanoparticle formation. Incubating the aqueous extract and metal precursor with 1.5 volume ratio at 50°C for 30 min leads to the formation of the smallest nanoparticles with the narrowest size distribution. At the optimal condition, the nanoparticles were found to be within the range of 35-50 nm. Experimental measurements of the average nanoparticle size were fitted well to the polynomial model satisfactory with R2 of 0.9078. Among all model terms, the linear term of temperature, the quadratic terms of temperature, and mixing volume ratio have the significant effects on the nanoparticle average size. FeNPs produced at the optimal condition were characterised by transmission electron microscopy, thermogravimetry analysis (TGA), and Fourier-transform infrared spectroscopy. The observed weight loss in the TGA curve confirms the encapsulation of FeNPs by the biomolecules of the extract which were dissociated by heat.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge