English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
3 Biotech 2019-Feb

Production of hydrocarbon-degrading microorganisms using agricultural residues of Mangifera indica L. and Carica papaya as carbon source.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sergio Valdivia-Rivera
Elizabeth Varela-Santos
Tannia Quiñones-Muñoz
Ricardo Hernández-Martínez
Manuel Lizardi-Jiménez

Keywords

Abstract

The aim of the present study was to evaluate the potential of oils from agricultural residues, such as Mangifera indica L. (mango) and Carica papaya (papaya) from the Papaloapan region, Mexico, as a carbon source for the production of hydrocarbon-degrading (hydrocarbonoclastic) microorganisms in an airlift bioreactor via a common metabolic pathway for hydrocarbons and fatty acids. Biomass growth and carbon source uptake were measured using optical density and gas chromatography, respectively. Gompertz, logistic, and Von Bertalanffy mathematical models were used to obtain kinetic parameters such as the lag phase, maximum specific growth, and consumption rate. The hydrocarbonoclastic consortium was able to grow using papaya (6.09 ± 0.23 g L-1) and mango (2.59 ± 0.30 g L-1) oils, which contain certain antibacterial fatty acids. Differences observed in maximum specific growth and consumption rates indicate that, although mango oil was consumed faster (0.33 day-1 for mango and 0.25 day-1 for papaya), papaya oil provided a higher rate of biomass production per microorganism (0.24 day-1 for mango and 0.44 day-1 for papaya). Additionally, the consortium was able to consume 13 g L-1 diesel as a sole carbon source and improve its maximum specific consumption rate following growth using the oils. Furthermore, the maximum specific growth rate was decreased, indicating a change in the consortium capabilities. Nevertheless, agricultural waste oils from the Papaloapan region can be used to cultivate hydrocarbonoclastic microorganisms. The present study creates the possibility of investigating carbon sources other than hydrocarbons for the production of hydrocarbonoclastic microorganisms.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge