English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1990-Jul

Progressive hypoxia inhibits the de novo synthesis of galactosylceramide in cultured oligodendrocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Kendler
G Dawson

Keywords

Abstract

Neonatal rat oligodendrocyte (OLG) cultures exposed to 6 h of gradual, progressive hypoxia in a GasPak (BBL, Becton Dickinson) apparatus were not injured or metabolically impaired, but instead showed a specific inhibition of de novo synthesis (measured by [3H]palmitic acid labeling) of the major myelin component galactosylceramide (GalCer). De novo synthesis of the 2-hydroxy fatty acid GalCer (HFA-GalCer) species, which requires O2 for its synthesis, was most severely inhibited (by 65%), while non-hydroxy GalCer species (NFA-GalCer) were less affected. The synthesis of membrane glycerophospholipids and sphingomyelin was unaffected by hypoxia. Treatment of OLG with 12 nM oligomycin, an inhibitor of mitochondrial ATP synthesis, resulted in an inhibition (by 50-60%) of synthesis of all GalCer species. [3H]Palmitate labeling of NFA-ceramide, the ungalactosylated precursor of NFA-GalCer species, increased in both hypoxia and oligomycin treatments, suggesting that the conversion of newly synthesized ceramide to GalCer was blocked. Newly synthesized HFA-ceramide did not accumulate in OLG, but the small labeled HFA-ceramide pool present during hypoxia was not converted into HFA-GalCer. Pulse-chase studies indicated that NFA- and HFA-ceramides labeled during these treatments were available for galactosylation and could be converted into GalCer upon reoxygenation. [3H]Galactose labeling of NFA-GalCer species was enhanced 2-fold in hypoxia, in contrast to the inhibition seen with [3H]palmitic acid labeling. Thus, while de novo GalCer synthesis was blocked in hypoxia, galactosylation of pre-existing ceramide pools was actually enhanced. Our evidence suggests that hypoxia results in a reversible inhibition of transport of newly synthesized ceramide from its site of synthesis to its site of galactosylation, but causes an increase in galactosylation of subcellular pools of pre-existing ceramide.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge