English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Cardiology 1978-Sep

Progressive transmural electrographic, myocardial potassium ion/sodium ion ratio and ultrastructural changes as a function of time after acute coronary occlusion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V S Banka
M M Bodenheimer
K B Ramanathan
G A Hermann
R H Helfant

Keywords

Abstract

The progressive transmural electrographic, biochemical and ultrastructural changes as a function of time after acute coronary occlusion were systematically assessed in eight dogs. Transmural plunge electrodes with poles 1 mm apart were placed in the ischemic and nonischemic zones, and coronary occlusion was maintained for 4 hours. Transmural full thickness biopsy specimens were obtained from each zone for electron microscopy before, and 1 and 4 hours after occlusion. Endocardial and epicardial layers were also obtained for assessment of myocardial potassium ion (K+) and sodium ion (Na+) concentrations. Before coronary occlusion, local Q waves were recorded an average depth of 1.0 +/- 0.34 mm from the endocardial surface. After 1 hour of occlusion, Q waves appeared at an average depth of 3.8 +/- 0.67 mm and progressed to a depth of 5.2 +/- 0.7 mm at 2 hours, 6.2 +/- 0.5 mm at 3 hours and 7.0 +/- 0.5 mm at 4 hours. After 1 hour, ultrastructural changes of early ischemia, including a decrease in glycogen and mild mitochondrial swelling, were seen in the endocardial layer; the epicardial layer showed normal morphologic features. After 4 hours, the endocardial layer showed well developed ischemic changes marked by the loss of mitochondrial cristae, vacuolization, the appearance of amorhopous mitochondrial cristae, vacuolization, the appearance of amorphous mitochondrial densities, an increase in interfibrillary space and the appearance of I bands. In contrast, the epicardial layer at this time showed only early ischemic changes. At the end of 4 hours, the endocardial layer showed a marked decrease in myocardial K+ concentration and an increase in Na+ concentration leading to complete reversal of K+/Na+ ratio (0.7 +/- 1.0; P less than 0.001). In the epicardial layer, a smaller decrease in K+ concentration and an increase in Na+ concentration occurred, resulting in a diminution but not a reversal of K+/Na+ ratio (1.4 +/- 0.2; P less than 0.005). Thus, the dynamic evolution of an acute myocardal infarction involves a sequential progression from endocardium to epicardium as a function of time, resulting in an epicardial "border zone" in the early stages after acute coronary occlusion.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge