English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Chemistry 2019-Nov

Proline-based allosteric inhibitors of Zika and Dengue virus NS2B/NS3 proteases.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Benedikt Millies
Franziska von Hammerstein
Andrea Gellert
Stefan Hammerschmidt
Fabian Barthels
Ulrike Göppel
Melissa Immerheiser
Fabian Elgner
Nathalie Jung
Michael Basic

Keywords

Abstract

The NS2B/NS3 serine proteases of the Zika and Dengue flaviviruses are attractive targets for the development of antiviral drugs. We report the synthesis and evaluation of a new, proline-based compound class that displays allosteric inhibition of both proteases. The structural features relevant for protease binding and inhibition were determined to establish them as new lead compounds for flaviviral inhibitors. Based on our structure-activity relationship studies, the molecules were further optimized, leading to inhibitors with submicromolar IC50 values and improved lipophilic ligand efficiency. The allosteric binding site in the proteases was probed using mutagenesis and covalent modification of the obtained cysteine mutants with maleimides, followed by computational elucidation of the possible binding modes. In infected cells, antiviral activity against Dengue virus serotype 2 using prodrugs of the inhibitors was observed. In summary, a novel inhibitor scaffold targeting an allosteric site shared between flaviviral NS2B/NS3 proteases is presented whose efficacy is demonstrated in vitro and in cellulo.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge