English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Vascular Surgery 2019-Oct

Propofol Relaxes Isolated Rat Aorta through BKCa Activation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kemal Ulusoy
Muhammed Dogan
Saliha Cam
Seyfullah Arslan
Oguzhan Yildiz

Keywords

Abstract

Propofol is an intravenous anesthetic that can be used for the induction and maintenance of anesthesia. In the present study, it was aimed to investigate the mechanism of vasodilator action of propofol in the rat aorta (RA).

METHODS
The RA rings were suspended in isolated organ baths and tension was recorded isometrically. First, potassium chloride (KCl) and phenylephrine (PE) were added to organ baths to form precontraction. When the precontractions were stable, propofol (1, 10, and 100 μM) was added cumulatively to the baths. The antagonistic effect of propofol on KCl (45 mM), PE (1 μM), 5-hydroxytryptamine (5-HT) (30 μM), and calcium chloride (CaCl2) (10 μM to 10 mM) induced contractions in the vascular rings were investigated. Propofol-induced relaxations were also tested in the presence of the K+ channel inhibitors tetraethylammonium (TEA, 1 mM), glibenclamide (GLI, 10 μM), 4-aminopyridine (4-AP, 1 mM), and barium chloride (BaCl2, 30 μM).

RESULTS
Preincubation with propofol (1, 10, and 100 μM) did not affect the basal tone but inhibited the contraction induced by KCl, PE, 5-HT, and CaCl2-induced contractions. Propofol-induced relaxation was not effected by 4-AP, GLI, and BaCl2. However, TEA inhibited propofol-induced relaxations significantly.

CONCLUSIONS
The propofol induces relaxation in contracted RA and inhibits KCl, PE, 5-HT, and CaCl2-induced contractions. The results demonstrate that the mechanism of action of propofol-induced vasodilation in the RA may be related to large conductance Ca2+-activated K+ channel activation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge