English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FASEB Journal 2015-Apr

Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kyle L Flannigan
Terence A Agbor
Jean-Paul Motta
José G P Ferraz
Rui Wang
Andre G Buret
John L Wallace

Keywords

Abstract

During a course of colitis, production of the gaseous mediator hydrogen sulfide (H2S) is markedly up-regulated at sites of mucosal damage and contributes significantly to healing and resolution of inflammation. The signaling mechanisms through which H2S promotes resolution of colitis are unknown. We hypothesized that the beneficial effects of H2S in experimental colitis are mediated via stabilization of hypoxia-inducible factor (HIF)-1α. The hapten dinitrobenzene sulfonic acid was used to induce colitis in rats and mice. This resulted in an elevated expression of the H2S-producing enzyme, cystathionine γ-lyase (CSE), and HIF-1α at sites of mucosal ulceration, and the expression of these 2 enzymes followed a similar pattern throughout the course of colitis. This represented a functionally important relationship because the loss of CSE-derived H2S production led to decreased HIF-1α stabilization and exacerbation of colitis. Furthermore, application of an H2S-releasing molecule, diallyl disulfide (DADS), stabilized colonic HIF-1α expression, up-regulated hypoxia-responsive genes, and reduced the severity of disease during peak inflammation. Importantly, the ability of DADS to promote the resolution of colitis was abolished when coadministered with an inhibitor of HIF-1α in vivo (PX-478). DADS was also able to maintain HIF-1α expression at a later point in colitis, when HIF-1α levels would have normally returned to control levels, and to enhance resolution. Finally, we found that HIF-1α stabilization inhibited colonic H2S production and may represent a negative feedback mechanism to prevent prolonged HIF-1α stabilization. Our findings demonstrate an important link between H2S and HIF-1α in the resolution of inflammation and injury during colitis and provide mechanistic insights into the therapeutic value of H2S donors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge