English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Clinical Chemistry 1994

Prostatic specific antigen.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A M el-Shirbiny

Keywords

Abstract

PSA is a 34-kDa 240-amino-acid glycoprotein produced exclusively by prostatic epithelial cells. PSA is a serine protease, is a member of the kallikrein gene family, and has a high sequence homology with human glandular kallikrein. It has chymotrypsin-, trypsin-, and esterase-like activities. In the serum it is present mainly in a complex form with alpha 1-antichymotrypsin. It is secreted in the seminal plasma and is responsible for liquefaction of the seminal coagulum. The production of PSA proteins appears to be under the control of circulating androgens acting through the androgen receptors. The PSA gene is up-regulated predominantly by androgens at both the protein and mRNA levels. DRE causes minimal changes in the PSA level, while prostate massage, ultrasonography, systoscopic examination, and prostate biopsy can all cause clinically significant elevations. Other conditions, such as prostatitis, prostate intraepithelial neoplasia, acute urinary retention, and renal failure can also elevate the PSA level. The value of PSA as a screening tool is questionable because of the great deal of overlap in PSA levels between BPH and prostate cancer. However, if used in men over 50, in conjunction with DRE and/or ultrasonography, it may become a vital part of the early detection program. PSA's role in determining the clinical and pathological stage is also limited, in spite of the direct correlation between the pathological stage and the PSA level, because of great overlap in the PSA levels in various stages. The most important clinical utility of PSA is in monitoring patients after definitive therapy. PSA is most sensitive and reliable in the detection of a residual tumor, possibly recurrence, or disease progression following treatment, irrespective of the treatment modality. PSA can accurately predict the tumor status and can detect recurrence several months before its detection by any other method. PSA is also a very sensitive and specific immunohistochemical marker for tumors of prostatic origin. Compared to PAP, PSA is a more precise and meaningful marker in all clinical situations. With the development of ultrasensitive assays and the adoption of an international standard PSA calibrator, so that results from multicenter studies can be compared, PSA could become one of the most useful tumor marker in cancer biology.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge