English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Complementary and Alternative Medicine 2010-May

Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wendy Pearson
Ronald S Fletcher
Laima S Kott
Mark B Hurtig

Keywords

Abstract

BACKGROUND

A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM.

METHODS

HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 microg/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 microg/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 microg/mL), or CA (0.384 microg/mL), or CO (0.057 microg/mL) or FA (0.038 microg/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1beta (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining).

RESULTS

RA concentration of HRAMsim and CMsim was 49.3 and 0.4 microg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (> or = 8 microg/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (> or = 80 microg/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified.

CONCLUSIONS

Our biological extraction procedure produces a substance which is similar in composition to post-hepatic products. HRAMsim is an effective inhibitor of LPS-induced inflammation in cartilage explants, and effects are primarily independent of RA. Further research is needed to identify bioactive phytochemical(s) in HRAMsim.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge