English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain Research Bulletin 2018-Sep

Protection by tyrosine kinase inhibitor, tyrphostin AG126, through the suppression of IL-17A, RORγt, and T-bet signaling, in the BTBR mouse model of autism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sheikh F Ahmad
Mushtaq A Ansari
Ahmed Nadeem
Saleh A Bakheet
Musaad A Alshammari
Sabry M Attia

Keywords

Abstract

Autism spectrum disorder (ASD) is an extremely predominant neurodevelopmental disorder expressed as impairment in reciprocal social interaction along with repetitive, restricted, and stereotyped behaviors. The protein tyrosine kinase inhibitor, tyrphostin AG126 (AG126), regulates the expression of several genes that play an important role in the development of neuroinflammatory disorders. Here, we investigate the possible effects of AG126 (5 mg/kg daily through intraperitoneal injection) on self-grooming, marble burying, and hot plate test results in BTBR T + Itpr3tf/J mice (BTBR is a model of autism). We also explore the effects of AG126 administration on IL-17 A, RORγt, T-bet, and IFN-γ production in CD4+ T cells and on CCR6+ chemokine receptors in splenic cells. We further investigated the effect of AG126 administration on the mRNA and protein expression of IL-17 A, RORγt, T-bet, IFN-γ, and NF-κB in the brain tissue. Our results demonstrate that treatment of BTBR mice with AG126 reduced repetitive self-grooming scores and lowered hot plate sensitivity potentials. Furthermore, AG126 administration also caused a substantial reduction of IL-17 A, RORγt, T-bet, and IFN-γ production in CD4+ T cells and on CCR6+ chemokine receptors in splenic cells. BTBR mice treated with AG126 also show decreased mRNA and protein expression levels of IL-17 A, RORγt, T-bet, IFN-γ, and NF-κB activation in brain tissue. Our results indicate that treating BTBR mice with AG126 leads to protection against neuroimmune dysfunction/dysregulation through the inhibition of cytokines and transcription factor signaling. This mechanism may be useful in the development of future therapies for neuroimmune disorders.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge