English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurochemical Research 2014-Aug

Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xue Bai
Xiangjian Zhang
Linyu Chen
Jian Zhang
Lan Zhang
Xumeng Zhao
Ting Zhao
Yuan Zhao

Keywords

Abstract

Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague-Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG's influence on blood-brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge