English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Science

Protective effect of nicotinamide on neuronal cells under oxygen and glucose deprivation and hypoxia/reoxygenation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chiung-Chyi Shen
Hsueh-Meei Huang
Hsiu-Chung Ou
Huan-Lian Chen
Wen-Chi Chen
Kee-Ching Jeng

Keywords

Abstract

Nicotinamide (vitamin B(3)) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p < 0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B(3) reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos and zif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge