English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2014-Apr

Protective effect of tormentic acid from Potentilla chinensis against lipopolysaccharide/D-galactosamine induced fulminant hepatic failure in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xing Lin
Shijun Zhang
Renbin Huang
Shimei Tan
Shuang Liang
Xiaoyan Wu
Lang Zhuo
Quanfang Huang

Keywords

Abstract

A compound was isolated from Potentilla chinensis, and it was identified as tormentic acid (TA) based on its physicochemical properties and spectral data. The hepatoprotective effect of TA was evaluated using an acute liver failure model induced by lipopolysaccharide (LPS)/D-galactosamine (D-GalN). The results revealed that TA significantly prevented LPS/D-GalN-induced fulminant hepatic failure, as evidenced by the decrease in serum aminotransferase and total bilirubin activities and the attenuation of histopathological changes. TA alleviated the pro-inflammatory cytokines including TNF-α and NO/iNOS by inhibiting nuclear factor-κB (NF-κB) activity. Moreover, TA strongly inhibited lipid peroxidation, recruited the anti-oxidative defense system, and increased HO-1 activity. In addition, TA significantly attenuated increases in TUNEL-positive hepatocytes through decreasing the levels of cytochrome c, as well as caspases-3, 8 and 9, while augmenting the expression of Bcl-2. In conclusion, TA protects hepatocytes against LPS/D-GalN-induced injury by blocking NF-κB signaling pathway for anti-inflammatory response and attenuating hepatocellular apoptosis. Consequently, TA is a potential agent for preventing acute liver injury and may be a major bioactive ingredient of Potentilla chinensis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge