English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 1992-Dec

Protective effect of vinconate on ischemia-induced neuronal damage in the rat hippocampus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
T Iino
M Katsura
K Kuriyama

Keywords

Abstract

The protective effect of vinconate, a vinca alkaloid derivative, on ischemia-induced neuronal damage was investigated using a model of rat forebrain ischemia caused by occlusion of four vessels. Hippocampal cell loss was observed histologically and neurochemically 5 days after 10 min of ischemia. Treatment with vinconate (50 and 200 mg/kg i.p.) before cerebral ischemia significantly suppressed neuronal cell loss in the hippocampal CA1 region and the decrease in the content of neuroactive amino acids in the hippocampus. The release of neuroactive amino acids in the hippocampus was significantly increased by cerebral ischemia. Pretreatment with vinconate (50 and 200 mg/kg i.p.) significantly attenuated the increased release of glutamic acid and aspartic acid, but not the release of gamma-aminobutyric acid (GABA), taurine and glycine. This suppressive effect of vinconate was antagonized by scopolamine (10(-5) M). The addition of vinconate (10(-11)-10(-4) M) had no effect on the binding of [3H]MK-801. These results indicate that pretreatment with vinconate attenuates the ischemia-induced release of excitatory amino acids into the extracellular space of the hippocampus via the stimulation of presynaptic muscarinic acetylcholine receptors. The present results also suggest that this suppressive effect of vinconate on the release of excitatory amino acids (glutamic acid and aspartic acid) may play a crucial role in the protective action of this agent against ischemia-induced neuronal damage in the hippocampus.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge