English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic and Medicinal Chemistry Letters 2014-Dec

Protective effects of aloe-emodin on scopolamine-induced memory impairment in mice and H₂O₂-induced cytotoxicity in PC12 cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Li Tao
Jianmei Xie
Yuting Wang
Shi Wang
Shuangchan Wu
Qiman Wang
Hong Ding

Keywords

Abstract

Aloe-emodin (AE) is one of the most important active components of Rheum officinale Baill. The present study aimed to investigate that AE could attenuate scopolamine-induced cognitive deficits via inhibiting acetylcholinesterase (AChE) activity and modulating oxidative stress. Kunming (KM) mice were received intraperitoneal injection of scopolamine (2 mg/kg) to induce cognitive impairment. Learning and memory performance were assessed in the Morris water maze (MWM). After behavioral testing, the mice were sacrificed and their hippocampi were removed for biochemical assays (superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), AChE and acetylcholine (ACh)). In vitro, we also performed the AChE activity assay and H₂O₂-induced PC12 cells toxicity assay. After 2 h exposure to 200 μM H₂O₂ in PC12 cells, the cytotoxicity were evaluated by cell viability (MTT), nitric oxide (NO)/lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS) production. Our results confirmed that AE showed significant improvement in cognitive deficit in scopolamine-induced amnesia animal model. Besides, it increased SOD, GPx activities and ACh content, while decreased the level of MDA and AChE activity in AE treated mice. In addition, AE was found to inhibit AChE activity (IC₅₀ = 18.37 μg/ml) in a dose-dependent manner. Furthermore, preincubation of PC12 cells with AE could prevent cytotoxicity induced by H₂O₂ and reduce significantly extracellular release of NO, LDH and intracellular accumulation of ROS. The study indicated that AE could have neuroprotective effects against Alzheimer's disease (AD) via inhibiting the activity of AChE and modulating oxidative stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge