English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Computational and Structural Biotechnology Journal 2019

Proteins with Evolutionarily Hypervariable Domains are Associated with Immune Response and Better Survival of Basal-like Breast Cancer Patients.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shutan Xu
Yuan Feng
Shaying Zhao

Keywords

Abstract

Maltase-glucoamylase (MGAM) and MGAM2 both belong to the glycoside hydrolase family 31. MGAM, a therapeutic target for type 2 diabetes, is α-1,4-glucosidase and expressed in the intestine to catalyze starch digestion. MGAM2, however, is largely uncharacterized. By investigating The Cancer Genome Atlas data, we found that among breast cancer subtypes, MGAM2 expression is nearly exclusive to basal-like breast cancers (BLBCs), whereas MGAM tends to express in luminal A breast cancers. Moreover, MGAM2 expression is associated with better patient survival and correlated with immune genes/signatures, unlike MGAM. Both genes have emerged in mammals, but diverged after the placental-marsupial split. In placentals, MGAM2 has likely lost its α-1,4-glucosidase activity due to mutations in key catalytic sites, and has acquired a large domain that is extracellular, threonine-rich and evolutionarily hypervariable (EHV). Guided by MGAM2 findings, our genome-wide search identified >1000 human proteins with EHV regions. These proteins are enriched in immune functions and molecules, including major histocompatibility complex proteins. Their genes are expressed higher in BLBCs and are associated with better patient survival, like MGAM2. Their EHV-coding sequences are rich in simple repeats and harbor more cancer passenger mutations. In conclusion, MGAM2 diverges from MGAM structurally and likely functionally in placentals. MGAM2 is among >1000 human proteins with EHV regions and associated with immune response. We propose that these EHV molecules may have significant implication in cancer immunotherapy and BLBC treatment.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge