English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Asian Pacific Journal of Allergy and Immunology 2007-Mar

Proteome and immunome of pathogenic Leptospira spp. revealed by 2DE and 2DE-immunoblotting with immune serum.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yuwaporn Sakolvaree
Santi Maneewatch
Surasak Jiemsup
Buppa Klaysing
Pongsri Tongtawe
Potjanee Srimanote
Patcharin Saengjaruk
Sirinuch Banyen
Pramuan Tapchaisri
Manas Chonsa-nguan

Keywords

Abstract

In this study, proteomes of two pathogenic Leptospira spp., namely L. interrogans, serogroup Icterohaemorrhagiae, serovar Copenhageni and L. borgpetersenii, serogroup Tarassovi, serovar Tarassovi, were revealed by using two dimensional gel electrophoresis (2DE)-based-proteomics. Bacterial cells were disrupted in a lysis buffer containing 30 mM Tris, 2 M thiourea, 7 M urea, 4% CHAPS, 2% IPG buffer pH 3-10 and protease inhibitors and then subjected to sonication in order to solubilize as much as possible the bacterial proteins. The 2DE-separated components of both Leptospira homogenates were blotted individually onto membranes and antigenic components (immunomes) were revealed by probing the blots with immune serum of a mouse readily immunized with the homogenate of L. interrogans, serogroup Icterohaemorrhagiae, serovar Copenhageni. The immunogenic proteins of the two pathogenic Leptospira spp. could be grouped into 10 groups. These are: 1) proteins involved in the bacterial transcription and translation including beta subunit transcription anti-termination protein of DNA polymerase III, elongation factors Tu and Ts, and tRNA (guanine-N1)-methyltransferase; 2) proteins functioning as enzymes for metabolisms and nutrient acquisition including acetyl-Co-A acetyltransferase, putative glutamine synthetase, glyceraldehyde-3-phospahte dehydrogenase, NifU-like protein, 3-oxoacyl-(acyl-carrier-protein) reductase, oxidoreductase, sphingomyelinase C precursor, spermidine synthase, beta subunit of succinyl-CoA synthetase, and succinate dehydrogenase iron-sulfur subunit; 3) proteins/enzymes necessary for energy and electron transfer, i.e. electron transfer flavoprotein, and proton-translocating transhydrogenase; 4) enzymes for degradation of misfolded proteins, i.e. ATP-dependent Clp protease; 5) molecular chaperone, i.e. 60 kDa chaperonin; 6) signal transduction system, i.e. response regulator; 7) protein involved in immune evasion in host, i.e. peroxiredoxin; 8) cell structure proteins including MreB (cytoskeletal) and flagellin/ periplasmic flagellin; 9) lipoproteins/outer membrane proteins: LipL32, LipL41, LipL45 and OmpL1; and 10) various hypothetical proteins. Many immunogenic proteins are common to both Leptospira spp. These proteins not only are the diagnostic targets but also have potential as candidates of a broad spectrum leptospirosis vaccine especially the surface exposed components which should be vulnerable to the host immune effector factors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge