English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Insect Physiology

Proteomic analysis of labial saliva of the generalist cabbage looper (Trichoplusia ni) and its role in interactions with host plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Loren J Rivera-Vega
Bruce A Stanley
Anne Stanley
Gary W Felton

Keywords

Abstract

Insect saliva is one of the first secretions to come in contact with plants during feeding. The composition and role of caterpillar saliva has not been as thoroughly studied as that of sucking insects. This study focuses on characterizing the proteome of the cabbage looper (Trichoplusia ni) saliva using iTRAQ labeling and LC-MS/MS. We also measured how the saliva proteome changed when larvae were reared on different diets - cabbage, tomato, and an artificial pinto bean diet. We identified 254 proteins in the saliva out of which 63 were differentially expressed. A large percentage (56%) of the proteins identified function in protein metabolism, followed by proteins involved in vesicle transport (6%) and oxidoreductase activity (5%), among other categories. Several proteins identified are antioxidants or reactive oxygen species (ROS) scavengers. Among these ROS scavengers, we identified a catalase and further analyzed its gene expression and enzymatic activity. We also applied commercial, purified catalase on tomato and measured the activity of defensive proteins - trypsin proteinase inhibitor, polyphenol oxidase and peroxidase. Catalase gene expression was significantly higher in the salivary glands of larvae fed on tomato. Also, catalase suppressed the induction of tomato trypsin proteinase inhibitor levels, but not the induction of polyphenol oxidase or peroxidase. These results add to our understanding of proteomic plasticity in saliva and its role in herbivore offense against plant defenses.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge