English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Biology Reports 2018-Sep

Pterospermum acerifolium (L.) wild bark extract induces anticarcinogenic effect in human cancer cells through mitochondrial-mediated ROS generation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Surya Kant Tripathi
Bijesh K Biswal

Keywords

Abstract

Plants have many medicinal properties including anticancer activity due to the presence of several secondary metabolites. Current cancer treatment policies are not much effective because of side effects and resistance development. Therefore, the discovery of new phytotherapeutics with no or fewer side effects is highly needed. Pterospermum acerifolium (L.) wild, an angiosperm has a broad application in traditional Indian medicinal system including cancer treatment. Despite, there is no study available on the cytotoxic and apoptotic effect of P. acerifolium in human cancer cells. Exploring the medicinal properties of P. acerifolium plant by its traditional use will be helpful towards developing novel cancer therapeutics. Hence, we decided to demonstrate the anti-carcinogenic property of P. acerifolium ethanolic bark extract against lung (A549) and pancreatic (PANC-1) cancer cells. The cytotoxicity was demonstrated by MTT assay, morphological changes, and scratch invasion assay. Flow cytometry, fluorescence staining techniques, and cell cycle analysis were confirmed the apoptotic property of P. acerifolium plant. The cell viability assay revealed that P. acerifolium ethanolic bark extract significantly reduced the viability of both A549 and PANC-1 cells. Moreover, PANC-1 cells showed more sensitivity towards P. acerifolium ethanolic bark extract than A549 at higher concentrations. Clear visualization of changes such as cytoplasmic condensation, cellular morphology, cell shrinkage, and augmented number of dead cells in both the cancer cells was observed after treatment. Scratch and invasion assay showed that cell migration and invasion rate of both the cancer cells were significantly reduced. Fluorescence microscopic studies using acridine orange/ethidium bromide and DAPI (4', 6-diamidino-2-phenylindole) staining showed early and late apoptotic symptoms after treatment with bark extract. Rhodamine-123 and DCFH-DA staining analysis by fluorescence and flow cytometry showed that bark extract depolarized the mitochondria membrane potential and induced reactive oxygen species (ROS) generation. Cell cycle analysis through flow cytometry using propidium iodide stain showed that P. acerifolium bark extract arrested A549 and PANC-1 cells in sub-G1 phase stated early apoptosis. These findings collectively point to the fact that P. acerifolium bark extract induced cell cytotoxicity in lung and pancreatic cancer cells by modulating mitochondrial-mediated ROS generation, and cell cycle checkpoints.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge