English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nutrition 2014-Oct

Pteryxin: a coumarin in Peucedanum japonicum Thunb leaves exerts antiobesity activity through modulation of adipogenic gene network.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ruwani N Nugara
Masashi Inafuku
Kensaku Takara
Hironori Iwasaki
Hirosuke Oku

Keywords

Abstract

OBJECTIVE

Partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as an antiobesity candidate. However, the compound responsible for the antiobesity activity remained unknown. Thus, in this study we isolated the active compound, to determine the mechanisms related to antiobesity activity in vitro.

METHODS

The HP was fractionated, and the effect on the triacylglycerol (TG) content was evaluated in 3T3-L1 preadipocytes and HepG2 hepatocytes. On the basis of comprehensive spectroscopic analyses, the structure of the active compound was identified as pteryxin, a known compound in PJT. However, to our knowledge, its biological activities against obesity have not been reported previously. The dose-dependent effect on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis, and lipogenesis due to pteryxin (10, 15, and 20 μg/mL) were examined in vitro.

RESULTS

Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes (by 52.7%, 53.8%, and 57.4%, respectively; P < 0.05) and HepG2 hepatocytes (by 25.2%, 34.1%, and 27.4%, respectively; P < 0.05). Sterol regulatory element-binding protein-1 (SREBP-1c), fatty acid synthase (FASN), and acetyl-coenzyme A carboxylase-1 (ACC1) were down-regulated in pteryxin-treated 3T3-L1 adipocytes (by 18%, 36.1%, and 38.2%, P < 0.05) and HepG2 hepatocytes (by 72.3%, 62.9%, and 38.8%, respectively; P < 0.05). The adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was down-regulated (by 42.8%; P < 0.05), and hormone-sensitive lipase, a lipid catabolizing gene was up-regulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes. The uncoupling protein 2 (by 77.5%; P < 0.05) and adiponectin (by 76.3%; P > 0.05) were up-regulated due to pteryxin.

CONCLUSIONS

Our study demonstrated that pteryxin in PJT plays the key role in regulating the lipid metabolism-related gene network and improving energy production in vitro. Thus, the results suggest pteryxin as a new natural compound to be used as an antiobesity drug in the pharmaceutical industry.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge