English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2015-Jan

Purification and structural stability of white Spanish broom (Cytisus multiflorus) peroxidase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Patricia Perez Galende
Nazaret Hidalgo Cuadrado
Juan B Arellano
Francisco Gavilanes
Eduard Ya Kostetsky
Galina G Zhadan
Enrique Villar
Manuel G Roig
John F Kennedy
Valery L Shnyrov

Keywords

Abstract

New plant peroxidase has been isolated to homogeneity from the white Spanish broom Cytisus multiflorus. The enzyme purification steps included homogenization, NH(4)SO(4) precipitation, extraction of broom colored compounds and consecutive chromatography on Phenyl-Sepharose, HiTrap™ SP HP and Superdex-75 and 200. The novel peroxidase was characterized as having a molecular weight of 50 ± 3 kDa. Steady-state tryptophan fluorescence and far-UV circular dichroism (CD) studies, together with enzymatic assays, were carried out to monitor the structural stability of C. multiflorus peroxidase (CMP) at pH 7.0. Thus changes in far-UV CD corresponded to changes in the overall secondary structure of enzyme, while changes in intrinsic tryptophan fluorescence emission corresponded to changes in the tertiary structure of the enzyme. It is shown that the process of CMP denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme, N ⟶ kD, where k is a first-order kinetic constant that changes with temperature following the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge