English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2014-Nov

Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yoshihisa Nagatomo
Shiori Usui
Takamitsu Ito
Akira Kato
Makoto Shimosaka
Goro Taguchi

Keywords

Abstract

C-Glycosides are characterized by their C-C bonds in which the anomeric carbon of the sugar moieties is directly bound to the carbon atom of aglycon. C-Glycosides are remarkably stable, as their C-C bonds are resistant to glycosidase or acid hydrolysis. A variety of plant species are known to accumulate C-glycosylflavonoids; however, the genes encoding for enzymes that catalyze C-glycosylation of flavonoids have been identified only from Oryza sativa (rice) and Zea mays (maize), and have not been identified from dicot plants. In this study, we identified the C-glucosyltransferase gene from the dicot plant Fagopyrum esculentum M. (buckwheat). We purified two isozymes from buckwheat seedlings that catalyze C-glucosylation of 2-hydroxyflavanones, which are expressed specifically in the cotyledon during seed germination. Following purification we isolated the cDNA corresponding to each isozyme [FeCGTa (UGT708C1) and FeCGTb (UGT708C2)]. When expressed in Escherichia coli, both proteins demonstrated C-glucosylation activity towards 2-hydroxyflavanones, dihydrochalcone, trihydroxyacetophenones and other related compounds with chemical structures similar to 2',4',6'-trihydroxyacetophenone. Molecular phylogenetic analysis of plant glycosyltransferases shows that flavonoid C-glycosyltransferases form a different clade with other functionally analyzed plant glycosyltransferases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge