English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Bacteriology 2010-Mar

Purification of Helicobacter pylori NCTC 11637 cytochrome bc1 and respiration with D-proline as a substrate.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Minoru Tanigawa
Tomomitsu Shinohara
Katsushi Nishimura
Kumiko Nagata
Morio Ishizuka
Yoko Nagata

Keywords

Abstract

Helicobacter pylori is a microaerophilic bacterium associated with gastric inflammation and peptic ulcers. Knowledge of how pathogenic organisms produce energy is important from a therapeutic point of view. We found d-amino acid dehydrogenase-mediated electron transport from d-proline or d-alanine to oxygen via the respiratory chain in H. pylori. Coupling of the electron transport to ATP synthesis was confirmed by using uncoupler reagents. We reconstituted the electron transport chain to demonstrate the electron flow from the d-amino acids to oxygen using the recombinant cytochrome bc(1) complex, cytochrome c-553, and the terminal oxidase cytochrome cbb(3) complex. Upon addition of the recombinant d-amino acid dehydrogenase and d-proline or d-alanine to the reconstituted electron transport system, reduction of cytochrome cbb(3) and oxygen consumption was revealed spectrophotometrically and polarographically, respectively. Among the constituents of H. pylori's electron transport chain, only the cytochrome bc(1) complex had been remained unpurified. Therefore, we cloned and sequenced the H. pylori NCTC 11637 cytochrome bc(1) gene clusters encoding Rieske Fe-S protein, cytochrome b, and cytochrome c(1), with calculated molecular masses of 18 kDa, 47 kDa, and 32 kDa, respectively, and purified the recombinant monomeric protein complex with a molecular mass of 110 kDa by gel filtration. The absorption spectrum of the recombinant cytochrome bc(1) complex showed an alpha peak at 561 nm with a shoulder at 552 nm.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge