English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2019-Feb

Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice (Oryza sativa L.).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Penghui Cao
Yakun Ren
Xi Liu
Tianyu Zhang
Ping Zhang
Lianjie Xiao
Fulin Zhang
Shijia Liu
Ling Jiang
Jianmin Wan

Keywords

Abstract

GARS encodes an enzyme catalyzing the second step of purine nucleotide biosynthesis and plays an important role to maintain the development of chloroplasts in juvenile plants by affecting the expression of plastid-encoded genes. A series of rice white striped mutants were previously described. In this research, we characterized a novel gars mutant with white striped leaves at the seedling stage. By positional cloning, we identified the mutated gene, which encodes a glycinamide ribonucleotide synthetase (GARS) that catalyzes the second step of purine nucleotide biosynthesis. Thylakoid membranes were less abundant in the albinic sectors of mutant seedling leaves compared to the wild type. The expression levels of genes involved in chlorophyll synthesis and photosynthesis were changed. Contents of ATP, ADP, AMP, GTP and GDP, which are crucial for plant growth and development, were decreased in the mutant seedlings. Complementation and CrispR tests confirmed the role of the GARS allele, which was expressed in all rice tissues, especially in the leaves. GARS protein displayed a typical chloroplast location pattern in rice protoplasts. Our results indicated that GARS was involved in chloroplast development at early leaf development by affecting the expression of plastid-encoded genes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge