English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1988-Dec

Qualitative and Quantitative Analyses of Gibberellins in Vegetative Shoots of Normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 Seedlings of Zea mays L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Fujioka
H Yamane
C R Spray
P Gaskin
J Macmillan
B O Phinney
N Takahashi

Keywords

Abstract

Gibberellins A(12) (GA(12)), GA(53), GA(44), GA(19), GA(17), GA(20), GA(29), GA(1), and GA(8) have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Seven of these gibberellins (GAs) have been quantified by capillary gas chromatography-selected ion monitoring using internal standards of [(14)C(4)]GA(53), [(14)C(4)]GA(44), [(2)H(2)] GA(19), [(13)C(1)]GA(20), [(13)C(1)]GA(29), [(13)C(1)]GA(1), and [(13)C(1)]GA(8). Quantitative data from extracts of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings support the operation of the early 13-hydroxylation pathway in vegetative shoots of Zea mays. These data support the positions in the pathway blocked by the mutants, previously assigned by bioassay data and metabolic studies. The GA levels in dwarf-2, dwarf-3, and dwarf-5 were equal to, or less than, 2.0 nanograms per 100 grams fresh weight, showing that these mutants are blocked for steps early in the pathway. In dwarf-1, the level of GA(1) was very low (0.23 nanograms per 100 grams fresh weight) and less than 2% of that in normal shoots, while GA(20) and GA(29) accumulated to levels over 10 times those in normals; these results confirm that the dwarf-1 mutant blocks the conversion of GA(20) to GA(1). Since the level of GAs beyond the blocked step for each mutant is greater than zero, each mutated gene probably codes for an altered gene product, thus leading to impaired enzyme activities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge