English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Neuropathologica 2001-Sep

Quantitative immunogold study of glucose transporter (GLUT-1) in five brain regions of scrapie-infected mice showing obesity and reduced glucose tolerance.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A W Vorbrodt
D H Dobrogowska
M Tarnawski
H C Meeker
R I Carp

Keywords

Abstract

Distribution of glucose transporter (GLUT-1) in the microvascular endothelium of scrapie-infected SJL/J hyperglycemic mice showing clinical signs of scrapie, obesity and reduced glucose tolerance was studied in five brain regions: cerebral cortex, hippocampus, thalamus, cerebellum and olfactory bulb. Uninfected normoglycemic SJL/J mice showing normal glucose tolerance were used as a control. Ultrathin sections of brain samples embedded at low temperature in the hydrophilic resin Lowicryl K4M were exposed to anti-GLUT-1 antiserum followed by gold-labeled secondary antibodies. Labeling density was recorded over luminal and abluminal plasma membranes of microvascular endothelial cells. Ultrastructural observations revealed attenuation of the microvascular endothelial lining in numerous vascular profiles from brain samples of diabetic mice. Morphometric analysis revealed significant decreases of the labeling density for GLUT-1 in the microvasculature of the thalamus, cerebellum and, to a lesser degree, the hippocampus of diabetic mice. No significant differences between diabetic and non-diabetic, control mice were observed in the microvessels supplying cerebral cortex and olfactory bulb. These findings suggest that abnormal glucose metabolism, manifested by reduced glucose tolerance and hyperglycemia, leads to impaired transvascular glucose transport in some brain regions but not in others, presumably disturbing the function of those brain regions supplied by the affected blood microvessels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge