English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteome Research 2010-Feb

Quantitative organellar proteomics analysis of rough endoplasmic reticulum from normal and acute pancreatitis rat pancreas.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xuequn Chen
Maria Dolors Sans
John R Strahler
Alla Karnovsky
Stephen A Ernst
George Michailidis
Philip C Andrews
John A Williams

Keywords

Abstract

The rough endoplasmic reticulum (RER) is a central organelle for synthesizing and processing digestive enzymes and alteration of ER functions may participate in the pathogenesis of acute pancreatitis (AP). To comprehensively characterize the normal and diseased RER subproteome, this study quantitatively compared the protein compositions of pancreatic RER between normal and AP animals using isobaric tags (iTRAQ) and 2D LC-MALDI-MS/MS. A total of 469 unique proteins were revealed from four independent experiments using two different AP models. These proteins belong to a large number of functional categories including ribosomal proteins, translocon subunits, chaperones, secretory proteins, and glyco- and lipid-processing enzymes. A total of 37 RER proteins (25 unique in arginine-induced, 6 unique in caerulein-induced and 6 common in both models of AP) showed significant changes during AP including translational regulators and digestive enzymes, whereas only mild changes were found in some ER chaperones. The six proteins common to both AP models included a decrease in pancreatic triacylglycerol lipase precursor, Erp27, and prolyl 4-hydroxylase beta polypeptide as well as a dramatic increase in fibrinogen alpha, beta and gamma chains. These results suggest that the early stages of AP involve changes of multiple RER proteins that may affect the synthesis and processing of digestive enzymes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge