English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2011-Aug

R3F, a novel membrane-associated glycogen targeting subunit of protein phosphatase 1 regulates glycogen synthase in astrocytoma cells in response to glucose and extracellular signals.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ian R Kelsall
Martin Voss
Shonagh Munro
Daniel J R Cuthbertson
Patricia T W Cohen

Keywords

Abstract

Abnormal regulation of brain glycogen metabolism is believed to underlie insulin-induced hypoglycaemia, which may be serious or fatal in diabetic patients on insulin therapy. A key regulator of glycogen levels is glycogen targeted protein phosphatase 1 (PP1), which dephosphorylates and activates glycogen synthase (GS) leading to an increase in glycogen synthesis. In this study, we show that the gene PPP1R3F expresses a glycogen-binding protein (R3F) of 82.8 kDa, present at the high levels in rodent brain. R3F binds to PP1 through a classical 'RVxF' binding motif and substitution of Phe39 for Ala in this motif abrogates PP1 binding. A hydrophobic domain at the carboxy-terminus of R3F has similarities to the putative membrane binding domain near the carboxy-terminus of striated muscle glycogen targeting subunit G(M)/R(GL), and R3F is shown to bind not only to glycogen but also to membranes. GS interacts with PP1-R3F and is hyperphosphorylated at glycogen synthase kinase-3 sites (Ser640 and Ser644) when bound to R3F(Phe39Ala). Deprivation of glucose or stimulation with adenosine or noradrenaline leads to an increased phosphorylation of PP1-R3F bound GS at Ser640 and Ser644 curtailing glycogen synthesis and facilitating glycogen degradation to provide glucose in astrocytoma cells. Adenosine stimulation also modulates phosphorylation of R3F at Ser14/Ser18.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge