English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of the Rheumatic Diseases 2019-Feb

REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Eleni Frangou
Akrivi Chrysanthopoulou
Alexandros Mitsios
Konstantinos Kambas
Stella Arelaki
Iliana Angelidou
Athanasios Arampatzioglou
Hariklia Gakiopoulou
George Bertsias
Panayotis Verginis

Keywords

Abstract

The release of neutrophil extracellular traps (NETs) represents a novel neutrophil effector function in systemic lupus erythematosus (SLE) pathogenesis. However, the molecular mechanism underlying NET release and how NETs mediate end-organ injury in SLE remain elusive.NET formation and NET-related proteins were assessed in the peripheral blood and biopsies from discoid lupus and proliferative nephritis, using immunofluorescence, immunoblotting, quantitative PCR and ELISA. Autophagy was assessed by immunofluorescence and immunoblotting. The functional effects of NETs in vitro were assessed in a primary fibroblast culture.Neutrophils from patients with active SLE exhibited increased basal autophagy levels leading to enhanced NET release, which was inhibited in vitro by hydroxychloroquine. NETosis in SLE neutrophils correlated with increased expression of the stress-response protein REDD1. Endothelin-1 (ET-1) and hypoxia-inducible factor-1α (HIF-1α) were key mediators of REDD1-driven NETs as demonstrated by their inhibition with bosentan and L-ascorbic acid, respectively. SLE NETs were decorated with tissue factor (TF) and interleukin-17A (IL-17A), which promoted thrombin generation and the fibrotic potential of cultured skin fibroblasts. Notably, TF-bearing and IL-17A-bearing NETs were abundant in discoid skin lesions and in the glomerular and tubulointerstitial compartment of proliferative nephritis biopsy specimens.Our data suggest the involvement of REDD1/autophagy/NET axis in end-organ injury and fibrosis in SLE, a likely candidate for repositioning of existing drugs for SLE therapy. Autophagy-mediated release of TF-bearing and IL-17A-bearing NETs provides a link between thromboinflammation and fibrosis in SLE and may account for the salutary effects of hydroxychloroquine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge