English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Radiation Research 2004-Feb

Radiation-induced edema is dependent on cyclooxygenase 2 activity in mouse brain.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Amy H Moore
John A Olschowka
Jacqueline P Williams
Sharon L Paige
M Kerry O'Banion

Keywords

Abstract

Cerebrovascular dysfunction, characterized by compromise of the blood-brain barrier and formation of cerebral edema, is common during the acute period after brain irradiation and may contribute to delayed pathology (e.g. vascular collapse, white matter necrosis) that leads to functional deficits. Another response of normal brain tissue to radiation is the induction of inflammatory markers, such as cytokine expression and glial activation. In particular, radiation-induced neuroinflammation is associated with an elevation in cyclooxygenase 2 (COX2), one of two isoforms of the obligate enzyme in prostanoid synthesis and the principal target of non-steroid anti-inflammatory drugs. Since prostanoids serve as autocrine and paracrine mediators in numerous physiological and pathological processes, including vasoregulation, we investigated COX2 protein expression and COX2-mediated prostanoid production in radiation-induced cerebral edema in male C57/BL6 mice. We found that radiation induces COX2 protein that is accompanied by specific increases in prostaglandin E(2) and thromboxane A(2) within 4 and 24 h after brain irradiation. Furthermore, we showed that treatment with NS-398, a selective COX2 inhibitor, attenuated prostanoid induction and edema formation. These results suggest that radiation-induced changes in vascular permeability are dependent on COX2 activity, implicating this enzyme and its products as targets for potential therapeutic treatment/protection from the effects of radiation on normal brain tissue.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge